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CHAPTER I

INTRODUCTION

This dissertation deals with the use of quadrilateral surface-
patch currents in the moment method solution of antenna and/or scatter-
ing problems. Wires and wire/plate attachments are also considered
here. One of the goals in this work is to develop a general purpose
computer code which can solve near- as well as far-zone parameters
of arbitrarily shaped antennas/scatterers accurately.

The basic formulation of the problem is in terms of an integral
equation where the unknowns are the surface currents. Here, Rumsey's
Reaction Integral Equation (RIE) £1], which is a general form of
the electric field (EFIE) and magnetic field (MFIE) integral equation
[2, is used. The choice of electric test source (used in this work)
reduces the RIE to the EFIE which is applicable to closed bodies as
well as open bodies, such as infinitely thin plates and wires. On
the other hand, if magnetic test sources are used, then the RIE reduces
to the MFIE. Although the MFIE is only applicable to closed bodies,
it is much simpler to implement.

Considerable work on the thin-wire formulation resulted in many
useful and versatile computer codes[3 , 4, and 5]. These codes are
ideal for thin-wire problems and can be used to model solid surfaces
by representing them in terms of a wire-grid. Richmond[63 was the
first to show the usefulness of the wire-grid models for scattering
from planar as well as three-dimensional objects. Numerous work on
this subject followed as summarized infi73. The advantage of wire-
grid modelling is its ability to treat solid objects with sharp edges,
corners, and thin-wire appendages. However, the wire-grid model has
to be constructed with care in order to have the minimum number of
unknown wire currents, to accurately represent the physical object;
yet not violate the assumptions of the thin-wire approximation. Anoth-
er disadvantage of the wire-grid modelling is that it may not reliably
predict accurate near-zone parameters such as surface currents and
impedances.

Early work on surface-patch modelling was done using the MFIE to
solve closed surface scatterers. Oshiro [83 used a pulse basis func-
tion and point matching approach to solve the MFIE for various well de-
fined three-dimensional objects. This method was extended for arbitrar-
ily shaped surfaces by nepp and Goldhirsh [9: through the use of non-
planar cells. In their work, nine points on the body were used to

I
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find the directions of the two tangential surface current expansions
for each cell. Albertsen, et a]., [10] allowed wire attachments to
a closed body by applying theMTIE for the body and the EFIE with
the thin-wire approximation for" the wires. Planar quadrilateral patch-
es were used to simulate the body along with pulse basis functions
with point matching to represent the surface currents. Special consid-
erations were also given to the surface-patches on which wires are
attached. Based on this wire/closed uody formulation, the user-oriented
Numerical Electromagnetic Code (NEC) was developed by Burke and Poggio
[11] for solving electromagnetic problems involved with wires/closed
bodies. In this code, the user specifies the shape of the body by
first dividing it into surface-patches. The area, x-y-z coordinates
of the center, and the unit normal vector of each patch are then enter-
ed as inputs into the computer code. Recently, J.J.H. Wang[12] used
the planar triangular patches along with the MFIE to solve the scatter-
ing problem of closed bodies. The basis function is related to the
incident field by the physical-optics current technique. Consequently,
the moment method impedance matrix is dependent on the incident field.

N.N. Wang, et a]., [13] employed the RIE (using electric test
source) along with rectangular sinusoidal surface-patch basis function
and Galerkin's method to solve for the currents and scattering paramet-
ers of planar and non-planar surfaces. Sankar and Tong [14] used
the finite element approach, where the equation for the surface currents
is made stationary with respect to the set of trial functions (similar
to Galerkin's method for EFIE). The planar triangular patch has been
used because of formulation ease and better representation of arbitrary
surfaces. Planar triangular patches were also used in the EFIE formula-
tion by Wilton, et al., [15]. Again, pulse basis function and point
matching were used in the moment method solution. Newman and Pozar
[16] modelled composite wire and surface geometries by using sinusoidal
rectangular surface-patch, thin-wires, and wire/plate expansion modes.
Galerkin's method was used to solve the RIE (with electric test source)
for far- as well as near-zone parameters such as surface currents
and impedances. The rectangular sinusoidal surface-patch was extended
to quadrilateral and triangular surface-patches by Singh and Adams
[17].

The basic formulation in this work parallels much of the work
done by Newman and Pozar E163, except that quadrilateral surface-patch-
es are now used. Attention is also given to the problem of automatical-
ly generating the surface-patch modes on a given polygonal plate.
One of the goals in this work is to produce a user-oriented computer
code for electromagnetic problems dealing with plates and/or wires.
The general idea is to let the user model a solid object by a series
of connecting plates, and only the coordinates of the plate corners
are needed to specify the plates. The automatic generation of surface-
patch modes by the code will greatly reduce the amount of input data
required. It should be noted that the basic surface-patch dipole
can be either a planar or a non-planar V-dipole which can be used
to model any arbitrary three-dimensional surface.
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Chapter Two presents the reaction formulation for the moment
method solution of composite surfice/wire geometries. The wire, plates,
wire/plate attachment, and plate overlap modes are defined. Techniques
for accurate and efficient evuatins of the mutual impedances are
discussed.

Chapter Three describe, 'he method fur automatically generdting
surface-patch modes for a given pol/gonal plate. , ,t'ria t
must be satisfied in order to have a set uf surface-patch modes which
satisfy the current (onditions )n the plates ire listed. In addition,
the geometric features of the surface-patch which will allow efficient
evaluation of the impedance i Y i-(' ' ric . ;' standard sub dvi-
sion technique, as well as two other !(W itAhL1, Io Or ,!utunat IC cu-r t . -
patch mode generaticr, ar. presented.

Chapter Four shows the results obtained by using the subdivision
methods presented in Chapter Three for different polygonal plates.
Both input impedance and backscatter data are compared with other
independent calculations and measurements.

Chapter Five describes the use of the moment method to analyze
the microstrip antenna. The microstrip patch is modelled by the sur-
face-patch mode and the dielectric is modelled by volume polarization
currents. The volume polarization currents are related to the surface
current by the boundary condition at the conductor and dielectric
interface. This results in having the surface currents as unknowns
and the dielectric is taken into account by a modification of the
free-space impedance matrix. Calculations are made for many patch
geometries and the results are compared with measurements and calcula-
tions by other investigators.

Chapter Six is the conclusion and includes suggestions of related
topics for further research.

I
I
I
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CHAPTER II

FORMULATION OF THE PROBLEM

In this chapter, the electromagnetic scattering or antenna problem
is formulated in terms of a surface integral equation based on the reac-
tion concept [1] . The unknown is the surface current which can be cal-
culated using the moment method. The surface structure of the antenna
or scatterer is modelled by a combination of plates and thin wires.
Thus, the surface currents can be represented by a finite series with
three basis functions: surface dipole modes, wire dipole modes, and
wire-to-surface attachment modes.

A. The Reaction Formulation

The use of the reaction concept to derive an integral equation
which describes the electromagnetic fields in an antenna or scattering
problem has been presented by Richmond [19i, Wang, et al., [13J and New-
mand and Pozar[16, but is included here for compl'teness. The dis-
tinction between an antenna and scattering problem is that when the
source is located on or near the object, it is considered as an antenna
problem and when the source is distant from the object, it is viewed as
a scattering problem. Both cases can be considered at once by analyzing
the objects in an impressed field generated by the source (J., M ) The
problem is depicted in Figure 1, where the objects can be AitAry
closed or open surface and wire structures, and a wire may contact a sur-
face.

Let S denote the surface enclosing the bodies, and n be the unit
outward normal to S. In the presence of the bodies, the sources (J,,
Mi) generate the fields (E, H). These feds are considered to be-"
Time harmonic, and the time dependence e is suppressed. From the
surface-equivalence theorem of Schelkunoff [18], the field interior
to the surface S will vanish without changing the exterior field
if the surface current densities

JS = n x H (1)

Ms = E x n (2)

are introduced on the surface S, as shown in Figure 2. The null field
condition inside the bodies allows the bodies to be replaced by the
ambient medium without altering the field anywhere.

4
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Figure 1. The scatterers in an impressed field generated by the source
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Figure 2. Surface currents (J M ) are placed on S without changing

the exterior fields, bui making fields interior to S vanish.
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If (Ji' M1) generate the incident fields (E., H.) in the ambient
medium (p,), then the scattered fields can be-defied as

s = E " Ei (3)

H = H - Hi (4)

The scattered field is radiated by the surface currents (J M )
in the ambient medium (Figure 3). This definition allows the toial
fields (E, H) to be a sum of the incident fields ( and the
scattered fields (Es' s) h

A test source (J , M ) is now introduced interior to S to form a
reaction 1 with thmextting fields (E, H). Since the total fields
inside the surface S are zero, the reaction of the test sources and the
fields inside S must be zero, i.e.

g (J -s - _m-s) ds + s (Jm' i ds = 0. (5)

Let the fields radiated by (J , M) in the ambient medium be (E
H m). By the reciprocity theorem, (5) can also be written as

%S (Is -_m - !sH-m) ds + fff ( Ji "Em - Hm) dV = 0 (6)

V
where V is the volume occupied by the impressed sources (J M1).
Equations (5) and (6) are different forms of the reaction integral
equation (RIE) developed by Rumsey[11. Equation (6) was applied
by Richmond [3 and 5] for his thin wire analysis. The RIE is a general
integral equation describing the electromagnetic fields. If only
electric current test sources are used, Equation (6) reduces to the
widely known EFIE and the use of only magnetic test sources will reduce
Equation (6) into the MFIE [2]. In this work, only the electric test
sources are used. The bodies are considered to be perfectly conducting
andM s = 0.

Although Equation (6) was derived with the assumption that all sur-
faces were closed so that Schekunoff's surface equivalance theorem [18]
can be used, it can also be applied for open surfaces. In the case
of an infinitely thin flat plate, J is the vector sum of the current
on the top and bottom surfaces if electric test sources are used [20J.

The following shows how Equation (6) is solved by the moment
method. The unknown current Js is expanded in terms of a set of N basis
(expansion) functions, Fn:

N
s = n In Fn (7)n=l -n

and Equation (6) is enforced for N electric test sources placed in
S. Thus, Equation (6) reduces to a set of simultaneous linear equations:

6
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N
SI n Zmn = Vm ; m 1 1, 2 ... N (8)

n=1

where

Zmn ff E- F ds (9)

n

Vm fff (Ji - Mi " -)dv. (10)

V

The integration in Equation (9) is over the surface of the nth expan-
sion mode.

B. Choice of Test Modes

The choice of the testing functions is dictated by several factors
including: computation time for the mutual impedances, convergence
rate, and the degree of accuracy required for the final result. Obvious-
ly, the choice of a delta function (point-matching) over the full sur-
face test function will significantly reduce the computation time.
In this work, the testing functions are chosen to be the same as the
expansion functions (Galerkin's method) for the following reasons:

a. Galerkin's method will result in a symmetric impedance
matrix. Thus, only half of the impedance elements,
i.e. the lower triangular matrix (L), are calculated and
stored. Also, solving for the unknowns (by the standard
Crout decomposition) with the triangular matrix (L) is
faster than with the full impedance matrix.

b. It is felt that Galerkin's method will result in a versa-
tile and general computer code. Thus, backscatter, as
well as numerically difficult antenna problems, can be
solved by the same general purpose computer code. In parti-
cular, when considering the point-matching technique for
a wire attached to a plate, the solution could be overly
sensitive to the proximity of the attachment point and
the match point. However, experience with rectangular
surface patch modes[16] indicated that, with surface test-
ing, the attachment point may be anywhere in the surface
patch grid.

c. Galerkin's method will ordinarily converge faster than point
matching. Thus, for a given surface patch grid, the result
obtained by Galerkin's method will be closer to convergerce

8
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than with point matching. This also implies that a smaller

number of unknowns is required for a given problem.

C. Expansion/Testing Functions

In order to model a geometry with thin-wires, flat surfaces,
and wire-surface connections, three basic types of modes (wire dipole
modes, surface dipole modes, and the wire-surface attachment modes)
are used. Singly curved surfaces can also be modelled using piecewise
flat approximation. All of the modes will hdve a sinusoidal variation
with free space wave number, k, in the direction of current flow.

1. Thin-wire Mode

The wire mode used is the piecewise-sinusoidal (PWS) V-dipole
consisting of two sinusoidal monopoles developed for the thin-wire formu-
lation by Richmond[ 19]. Figure 4 shows a V-dipole with a 1800 internal
angle lying on the z-axis. Using the thin-wire approximation, the
current on this dipole is given by

[ sin k (z-z1) + sin k (z3-z) 1 (1
-s -7-iFa 1Pl Inki- sin k (z2 3-_z 27

where P1 and P2 represent pulse functions with unit value when zi< z< z2
and z2< z< z3 , respectively, and are zero elsewhere. Also, a is the
wire radius and k = 2w /A . These modes are placed in an overlapping
array on the wire to ensure continuity of current on the wire. The
advantage of PWS mode is that the near-zone fields and the mutual imped-
ance, Zmn, are known in closed form [22].

2. Surface-patch Mode

The general quadrilateral surface-patch mode is a surface V-dipole
consisting of two quadrilateral piecewise-sin 8 soidal surface monopoles.
A surface V-dipole with interior angle of 180 is shown in Figure 5.
Consider some general point in monopole A (shown as thp heavy dot in
Figure 5), which has terminal length V and end length U. Construct
a line through the point which intersects the end and terminal such
that u/v = U/V. Let L be the length of this line and Z be the distance
along the line from the end to the point. Then the surface current
density on monopole A is

C sinkZ (12)
A W -- L7-T(1

' . I II i [. . . . . , _, . . . . . . ,i , . . . . . I . . . . . . ..9
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ZI Zz -S w

Figure 4. Thin-wire V-dipole.

END

MONOPOLE B

TERMINAL

U U
V V

,A MONOPOLE A

u END

Figure 5. PWS surface-patch V-dipole.
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where W(X /L) is the local width of monopole A, and C is a normalizing
constant such that the terminal current is one ampere. The surface
current density on monopole B, J , is defined in a similar way, but with
the current flowinq in the - Z direction. -his mofe is a generalization
of the rectanquifar PWS surfdCe-patCh dipoleP used by Wang [133 as well as
Newman and Pozar [16] .

3. Attachment Mode

The attachment mode is used to establish continuity of current
at the wire/surface junction and to ensure that, in the immediate vicin-
ity of the attachment, the surface current density has the proper p
polarization and i/p dependence. This mode consists of two parts:
a wire monopole and a disk monopole, as shown in Figure 6. The wire
monopole current density is similar to the thin wire monopole mode:

1 sin k(z2-z) z (13)
-s : Tir sin kz2

The disk current density is

D -sin k(b-P ^
-s np sfnk -- - p, a S P <  b, (14)

where a,b are the inner and outer radii of the annulus, respectively.
Note that the total current on the disk it p-a s equal to the tct2l cur-
rent on the wire segment it z=O insuring continnity of current at :he at-
tachment. Also, observe that the sin k(b-p) function in the numerator
of Equation (14) forces the disk current to be zero at the disk edge,
p =b. It is this property which allows the disk to be placed on the
surface and still maintain continuity of current on the surface. The
sin k(b- p) function was chosen (rather than, say, b-p or sin (b- p))
since this permits the fields of the disk to he obtained with only
one numerical integration.

The attachment mode is used by placing it directly over the sur-
face-patch modes where the wire meets the surface. There is no special
way in which the disk must be situated with respect to the surface-
patch modes; that is, the disk may be centered at midpoints, corners,
or other points on the surface-patch modes. The only restriction is
that the attachment point be at least 0.1 X from the edges of plates.
The outer radius of the disk mode, b, should be in the range from about
0.1 ,to 0.2 X[16].

For antennas, feeds may be placed at the endpoints of any wire
segment including the attachment segment. For example, the feed of
a monopole on a finite ground plane may be modelled by inserting a
generator at the base of the monopole between the attachment mode

11
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Figure 6. Attachment dipole.
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wire and disk monopole. Delta-gap reed is used in this work, although
a magnetic frill model could also be used.

4. Plate Overlap Mode

The overlap modes allow a non-zero continuous current at the
plate-to-plate junction. They ro ;dentical to the surface-patch dipole
mode discussed earlier. The ejge'; .f the overlap surface dipoles need
not coincide with the edges of thf, ;irface dipole modes on either plate,
thus allowing the interseciion of pljtes of different sizes.

D. Computation of Impedance F ;ments

Many computationally efficient techniques developed for the evalu-
ation of the mutual impedances associated with rectangular surface-
patches [21-]can also be used for the quadrilateral surface-patches.
This section will discuss these techniques and how they are used in
finding the mutual impedances of quadrilateral surface-patches. The
majority of the mutual impedances are either the surface-to-surface
dipole or disk-to-surface dipole iinpodances. The disk-to-surface dipole
impedance is calculated in the same way as described in referenceL-213.
The surface-to-surface dipole impedance is discussed below.

The general expression for the impedance matrix element given
in Equation (9) is evaluated numerically by considering the surface-
dipole modes as made up of PWS filaments. The surface-to-surface dipole
impedance is a sum of four surface-patch monopole-to-monopole impedances,
i.e.

Szmn tAeA +tAeB t~eA  t~e3  15
z mn = tA + z tAeB+ z tBe + z te (15)

where the superscript tA and eA denote the test monopole A and expansion
monopole B, respectively. Also, t and e are defined similarly.
Each surface-patch monopole-to-mongipole irpedance is evaluated by sum-
ming up all the filament-to-filament impedancesL-21]. If the test
and expansion surface monopoles are each represented by M filamepts,
then, in general, each monopole-to-monopole impedance requires M evalua-
tions of the filam, nt-to-f i]1:;.nt imp,,dances. If both monopoles are
rectangular, and if either the surface current directions are parallel
or the vector transverse to the surface monopoles are parallel, then
only 2M of these impedances are evaluated [21].

Most of the time spent in filling out the impedance matrix is
used in finding the filament-ti-filament impedances. Thus, computation
time depends on the number of filaments used to represent a surface
monopole. In evaluating the self impedance or mutual impedance of
two closely spaced surface monopoles, experience has shown that a fila-
ment spacing of 0.07 X or about five filaments per 0.25 X wide surface
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patch is adequate for representing the surface patch. More numerically
difficult problems, such as finding near field quantities of an antenna,
may require a slightly larger number of filaments usually no more than
seven filaments per 0.25X wide surface patch. Simpson's rule of inte-
gration is used to sum up the filament-to-filament impedances for a
surface monopole-to-monopole impedance. Usually, when the monopoles do
not intersect each other, a three-point Simpson's rule (or repre-
senting the surface patch by three filaments) is used. For surface
monopoles spaced more than 0.25X apart, a one-filament representation
for each surface monopole is used. As an example, the reactance of
two rectangular monopoles is plotted versus the separation distance,
D, in Figure 7. Plotted are the exact reactance (solid line) and the
reactance obtained by representing the surface monopole by one filament
on the center of the monopole (dotted line). The difference of the
two curves results from the phase and amplitude variations of the fila-
ment-to-filament impedance as the integration is done across the surface
patc9k. These phase and amplitude variations can be approximated by

(e R ) where R is the average distance of the two filaments. To

obtajPRa more accurate result by the one-filament representation,

(eR 2") is used in the following manner. If zff is the filament-

to-filament impedance, then the variation due to the nth expansion
surface-patch monopole is taken into account by:

ff J (-kR 4e-JkR e -jkR2  (16)

yen =n-- (16) R + 2
6 2

where R1, R, and R2 are the average distances from the test filament
to the closer edge, center, and further edges of, he surface-patch
monopole. Similarly, the variation due to the m test surface-patch
monopole is accounted for by:

RejkR -jkR 4e_ jkR -jkR 2 (Zmn fn. R eR + + )(J -l e e(17)
6 1/

The imaginary part of Zmn is plotted as dashed lines in Figure 7 and
is very close to the accurate impedance value (solid line). The real
part of zmn also behaves in the same manner.

Another time-saving technique is the use of an equivalent reactance
when two PWS filaments are very close to each other. This is used
only when two surface-patches coincide or share a common side. The
equivalent reactance is derived in the same manner as is done in refer-
ence C213. The reactance of two closely spaced filaments can be written
as

Y(x) = C1 + C2 9n (x) (18)
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Figure 7. The reactance of two rectangular PWS surface-patch monopoles.M denotes the number of PWS filaments used to represent the
surface patch.
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where Y is the reactance and x is the separation distance. CI and C2
are constants which can be evaluated by

Y(Ax) - Y( (19)
C2 n (F6T--- (R9

C1 = Y(Ax) - C2 Z n (Ax) (20)

Equation (18) can be integrated analytically to give an equivalent
reactance at x=O:

Y(O) = -Y(A x) + 2CI + 2C2 (in (Ax) - 1) (21)

Although Equations (18) through (20) were derived for parallel filaments,
it is also applicable to nonparallel filaments as shown in Figure 8.
Using the equivalent reactance at x=O (Equation 21) avoids the in-
singularity and, thus, significantly increases the convergence rate
[213.

Another factor to keep in mind when finding the PWS filament-
to-filament impedance is whether to evaluate the closed form expression
[22] or to use the less time consuming numerical integration. This
problem is addressed in Appendix A.
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CHAPTER III

AUTOMATIC GENERATION OF SURFACE PATCH MODE LAYOUT

The problem of setting up surface-patch modes over an arbitrarypol-
yconal flat plate is considered in this chapter. Three different
subdivision schemes are discussed. The first scheme is the Gordon-
Hall (G-H) procedure[23, and the last two are procedures devised
to achieve an optimal mode set-up by satisfying the criteria given
in the next section. Examples are used to illustrate the applicability
of each scheme.

A. Introduction

The set of coordinates describing all the surface dipole modes
forms a large portion of the input data required for the moment method.
Although coordinates for each mode can be manually entered into a
moment method computer code, it is desirable that the mode set up
be done automatically with the input being the geometry of the plates.
A reasonable mode generation algorithm should minimize the user data
input and be consistent with the following criteria:

a. In general, there must be two orthogonal sets of surface
dipole modes and their linear combination can approximate
the actual plate current.

b. At the edge of the plate, the component of current perpend-
icular to the edge must be zero and that parallel to the
edge must be non-zero.

c. The sides of modes at the boundary of the plate must match
the curvature of the boundary adequately, especially on
sharp bends.

d. The size of most modes should be about the same as a speci-
fied nominal size and the length of each monopole should
not exceed some maximum size.

e. Where possible, the shape of the monopoles should be rectang-
ular and the directions of currents in the majority of the
modes should be parallel.

18



Criterion (a) is required for the solution to converge, while
criterion (b) is a relaxed requirement of the edge condition E241.
This condition states that, in the vicinity close to the edge of an
infinitely thin plate, the currents perpendicular and parallel toIthe edge have the asymptotic behaviors p" and p5, respectively, where
Pis the perpendicular distance from the edge. However, the calcula-
tions of the input impedance of a monopole on a square plate by Pozar
and Newman E251 suggested that the surface patch dipoles adequately
approximate this behavior a least-mean-square sense, and special edge
modes with the required asymptotic behaviors do nut significantly
improve the final solution. On the contrary, Richmond E26] has addedIthe edge modes (with proper behavior at the edge) to the other basis
functions for strip grating and found that the convergence is improved.
For simplicity, these special edge modes have been avoided, and satisfact-
ory results (see Chapter Four) have been obtained. Criterion (c)
ensures that the boundary condition is satisfied on the boundary of the
plate.

I Although criteria (d) and (e) are not necessary requirements,
they are very important for the best computational efficiency. By keep-
ing the sizes of the patches as close to the nominal value as possible,
as stated in criterion (d), the total number of unknowns can be minimiz-
ed. Rectangular modes are desirable by virtue of their rapid converg-
ence rate and fast self and mutual impedance evaluation [21]. The
expression for the mutual impedance between two closely spaced parallel
current filaments is simpler to evaluate than that of the non-parallel
case; thus, parallel filaments result in reduced overall computation

Itime.
The corners (or nodes) and sides of the surface dipole modes

form a grid or mesh which can be automatically generated. Okon and
Harrington[27)listed several works done on automatic mesh generation
and described the Gordon-Hall procedure, which is relatively easy
to implement and satisfies several of the criteria listed previously.

B. Gordon-Hall (G-H) Procedure [23J

IThe G-H procedure forms a curvilinear coordinate system in an
arbitrary region, R, by a one-to-one mapping (U: S +R) from a unit
square A'B'C'D' in the s-t plane (S domain) to the region bounded
by ABCD in the x-y plane (R domain) (see Figure 9). In the following
discussion, R is a planar surface, but the method is applicable to
an arbitrary curved surface embedded in three-dimensional space.
The theory assumes the existence of a continuous vector-valued function
F which maps S onto R. However, in practice, the geometric description
of R is given in terms of its boundary and F becomes

F (st) (s,t) (22)

where x (s,t) and y (s,t) are parametric equations describing the
I boundary of R (3R) in the x-y plane. A class of mapping or function

19I
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Figure 9. The Gordon-Hall domains.
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U which interpolate F at j non-dru,,erable set of points (transfinite
property) comprising the bouniiry oi S is given by Gordon and Hall

F K31 as:

U (s,t) = (l-s)F(O,t) + sTF(1,t) + (1-t.) F(s,O) i t_F(s,1) -

(1-s)(1-t)F(0,0) ,',1-s)t! (0,1) - s(l-t)F(1,0) -

stF(I, 1) (23)

U can be described as a 1 furc iw, w i i nducf-, 9Weral i zed coodinates
s and t onto the reqion K. Ill i,, lost be illustrated by examples
given below.

1. The Quadrilateral [;'

The steps in forming i -Ik,'h u,,nerator for a quadrilateral
are (se Figure 10):

a. Choose four poitt; (m V. w; i(:h wil) separate the boundary
of the guair tatj 0 n- H i ;,'1 grt. These segments
should be appr x imat. Iy ,qpjal in or(ler to have 'i iiformly
spaced me,,h. Iii th a, ,\,mp le, it is obvious that the four
points are the i ,rro,-Ir of th. quadr- il atera I.

b. The four segmentL ao 4 !ne~d abovw ar to be the images of
the four sides of the unit square S under the mapping F.
That is, the segments are graphs of the 'our vector-vaTued
functions: for 0 < st 1,

)) X,+ S(X?-X1)>
F(s,O) ( + )l (24)

F(,t) x2 + t(X 3 - 2X) /  (25)

X4 * s(x 3 -x4 ) 
(26)

Y4 + s(Y,-Y,)J

F(O,t) = 1 -  (Y4-YI 
(2

c. The transt ini tre map 1 (or tho 1-i msh glenerator) is construct-
ed by siubs? ilolf ug [goat io,, (. ) through (27) into Equat Jun
(23), which reWs t.', ,:

21



t~ 0

Figure 10. A quadrilateral region R in the x-y plane.
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U (st) =x(s,t x (x I( ) + st Xi23X4 +_U s~) ys,t : Y2-Yl (Yl-Y2+Y3-Y4)

(x4-x) + (XI (28)

A grid formed by (28; i , . n ?Figure 11.

A special case of a quadrilateral is the triangle. The fourth
corner is arbitrarily set at the midpoint of its longest side. The
nesh formed by Equation ( g) is shown in Figure 12.

2. The Ellipse [ ]

This example difters from the pr-nv iod, ;i; ' in tv,) ,-spects: first,
it does not have a set of Ifur well defined points for segmenting
aR and, second, 3R is a curved line instead of straight line segments
(see Figure 17). However, the basic steps in finding U are the same:

a. The important consideration in choosing the four corner
points is to choose them so thit. the resulting arc lengths
are about the same. Thus, the fouir points (a,O), (o,b),
(-a,O), and (0,-b) are chosen.

b. The function F is: for 0 <s,t <1,

F(s,O) = (a cos (29)

Kb si n j ]

F(1,t) =(30)

) sin ( t+1)

a COS (s+l)
F(s,l) -1)

b sin (sf1)

F(0,t) ( ()

- in - -It t
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= 1.0

t 0.25

S =1.0' 't 0to

Figure 11. The curvilinear coordinates formed by the G-H Procedure for
the quadrilateral in Figure 10.
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Figure 12. The curvilinear coordinates formed inside a triangular re-
gion by the G-H Procedure.
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Figure 13. An elliptical region R in the x-y plane.
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c. Substituting Equations (29) through (32) into (23) yields:

U(s,t) y(s t )

[(1s)cost s scos T -t sinE-+st-t

Kbs COs -(-s si" 4t -s iiL -t Cos"L .+t..s]

Note that, in this case, U maps the straight lines in the
s-t plane into curved lines in the x-y plane, as shown in
Figure 14. Since only straight line segments are allowed
for the surface patch mode, the mesh is formed by connecting
the intersection points by straight line segments as shown in
Figure 15.

G-H procedure is an automatic mesh generator which satisfies
criteria (a) through (c) in section A of this chapter. However, criter-
ia (d) and (e) are usually not met for an arbitrary boundary. In
order to have criterion (d) satisfied, the four arcs describing the
3R must be carefully chosen such that they are approximately
of equal length. Note that each arc can be a straight line, curved
lines, or two or more straight line segments F23'. However, a bad
choice of the arc sections may result in a mapping U which does not
map S onto the correct planar surface of R F22. To alleviate this
problem, a region R with complex boundary may be subdivided into subre-
gions and each region is mapped independently. This will require
the user to parameterize the boundaries of several subregions, and these
subregions must be joined electrically by overlapping surface-patch
dipole modes. Since criterion (e) is seldom met in an arbitrary region
R, this results in inefficient evaluation of the impedance which trans-
lates into a large amount of computation time. Alternative subdivision
schemes are proposed to find a more desirable mesh for regions R which
are polygons.

C. Subdivision Method I

The objective of this section and the next is to present algorithms
such that, when implemented in the form of a computer code, can
provide the coordinates for a set of surface dipole modes which satis-
fies all the criteria given in Section A. It is assumed that an
arbitrarily shaped plat? can be adequatply described as a polygon.
Thus, the plate can be described by a set of points, ordered in either
clockwise or counter-clockwise direction, and the straight lines joining
these points form the houndarv of the plate. The basic approaches used
in these two subdivision schemes are discussed in Appendix C.

The general approach of this scheme is to choose a side and divide
the plate into strips which are parallel to this side. The width of
the strips is to be about the same or less than a specified maximum
size, W. Each end side of the strips should be a straight line segment
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Figure 14. The curvilinear coordinate system induced by the transfin-
ite mapping U.

YK

Figure 15. A mesh for the overlapping surface-patch dipole modes.
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which is a part of the plate boundary. A grid can be formed by segment-
ing the strips into an equal number of blocks and the maximum length
for the blocks should be less than or equal to the maximum width,
W. The details of the algorithm is given below (see Figures 16 and
18 - note that the arrows indicate the direction of the overlapping
surface patch dipole modes):

a. Choose a side such that strips parallel to this side (refer-
ence side) can be formed throughout the plate. Usually
the longest side is chosen. As shown in Figure 16, either
sides AB, DE, or AE can be chosen, but choosing other sides
will not allow the plate to be divided into parallel strips.
That is, the reference side must be chosen such that the
perpendicular vectors from the reference side to all other
corners of the Dlate must all point in the same direction.
Also, three consecutive vectors should have the property that
the length of the middle vector is not the shortest among the
three vectors. That is the situation as shown in Figure 17,
where AE chosen as the reference side is not permissible. IfAB
is not parallel to DE, then the strip with a side coinciding
to DE will not be trapezoidal. The strip width is found
by dividing the perpendicular distance from the reference
line (AB in this example) to the nearest corner by the small-
est integer N that will make the result less than or equal
to W. Note that strip widths can vary depending on the
distance from the reference side to the corners. If the
length DE is zero, then the strip with side DE will have
very short and zero length current elements. This is avoided
by reducing the width of this particular strip so that there
will be no side with zero length. Since there will be current
filaments along the end sides of each strip (see Figures
16 and 18), each strip must have no end sides whose lengths
exceed 0.25X If this is not satisfied, the strip must be
further divided into smaller strips.

b. Find the minimum integer, N , which the longest strip can
be segmented such that the Tength of each section along
this strip does not exceed W. Each strip is then divided
into Nt sections, resulting in a mesh as shown in Figures
16 and 18. Note that, if the two end sides of a strip are
not parallel, only trapezoidal blocks can be formed.

The mesh formed by this scheme will have about half of the surface
dipoles with current filaments that are parallel to each other (see
Figures 16 and 18). This is due to the fact that usually only trape-
zoidal blocks can be formed. However, the more disturbing feature
of this scheme is that, if there are strips whose lengths are much
shorter than others, there will be a relatively large number of very
small (or short) surface dipoles in the shorter strips. In spite
of these shortcomings, this scheme is still attractive is a plate
can be divided into strips whose lengths do not vary significantly.
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Figure 16. A set of overlapping surface-patch dipole modes formed in-
side a fin-shaped polygon by using subdivision method 1.
The arrows indicate the direction of the currents.
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Figure 17. A situation in which the side AE cannot be the reference
side.
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Figure 18. A set of overlapping surface-patch dipole modes formed in-
side a regular octagon by using subdivision method 1. The
area inside the polygon is equal to that of a circle with
a 0.3 X radius.
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A modification of this algorithm results in the next scheme where
two meshes are formed for the two current polarizations.

D. Subdivision Method 2

This subdivision scheme is similar to the previous one in that
strips are formed from one side of the plate. However, the strips
are not segmented by the same number of sections Nt; instead, each
strip is segmented into a minimum number of sections. This allows
the sizes of the surface monopoles to be more uniform. The interior
sides are adjusted such that most of the segments in a strip will
be rectangular (see Figures 21 and 22). This choice of segmentation
will allow only one set of surface dipole currents in the direction
along the length of the parallel strips. The other set of dipole
modes are formed by dividing the plate into strips again, but this
time the strips are perpendicular to the previous set of strips (see
Figure 23). The details of this subdivision scheme are:

a. This step is similar to step (a) in subdivision method 1.
However, relatively short strips are allowed. It is possible
that a plate geometry (such as that shown in Figure 17)
will not allow only one strip with the ends being the perimet-
er of the plate to be formed. To get around this problem,
another side may be chosen for the reference side. Alternat-
ively, the plate can be divided into two plates and surface-
patch dipoles set up for each plate. These two plates are
then joined by the plate overlap modes.

b. Each strip is segmented into the minimal number of sections
such that the length of each section should not exceed the
specified nominal value, W. If the two end sides are parallel,
i.e. ADIIBC in Figure 19, the sections will be rectangular.
If AD is not parallel to BC and the length of the longest
side of the strip is less than three times the maximum width,
W, the strip is divided as shown in Figure 20.

In the case where AD is not parallel to BC and the length of
the longest side is greater than three times the nominal
length, an attempt is made to segment the strip such that the
segments in the middle of the strips are rectanqular. As
shown in Figure 21, if IADI j W 42, then the strip can first
be segmented by the line AD'. The line A'D' is placed such
that the length of AA' is the maximum width, W. If the length
of DO' is less than 0.2 W, the point E', which is the midpoint
of segment DE, is used to segment the strip. This will allow
the quadrilateral AA'E'D to have a more uniform side length.
The same is done for the other end and the segmentation of the
rectangle EFB'C' will result in rectan. W lar sections, as shown
in Figure 21. If IADI > W ./ 2 (see Figure
22), then the strip can first be segmented
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Figure 19. Subdivision of a rectangular strip.
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Figure 20. Subdivision of a trapezoidal strip.

33

Ilk.



D D'E'E C' C

/ I I a

a A F BB

Figure 21. Subdivision of a trapezoidal strip with rectangular sec-
tions in the middle part of the strip.
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A P A' B' B

Figure 22. Subdivision of a trapezoidal strip with very long end sec-
tions (AD and AD').
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Figure 23. A set of overlapping surface-patch dipole modes formed in-
side a fin-shaped polygon by using subdivision method 2.
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by the line A'D. The line A'D is the perpendicular line
from point D to the line segment AB. The line AD is segment-
ed into N segments such that no section is greater than
W. Note that line AA' is segmented one segment less than
the line AD. This allows the quadrilateral APQD' to be
formed at the end of the strip. The line segment B'C' is
found like the above and the rectangle A B'C'D is segmented
into rectangular segments.

c. To form the other, set of currents orthoconal to the first
set, a line is drawn from the furthest (orner and perpendicu-
lar to the reference side. Strips are then formed parallel
to this line and the division is the same as that of steps
(a) and (b).

d. As shown in Figure 23, there may be some sides of an arbitrar-

ily shaped plate which do not have non-zero currents parallel
to the edges. Extra strips are formed parallei to these
edges. Ihe widths of these strips are the average width
of the previously formed strips or smaller.

The three subdivision schemes discussed in this chapter are just
a few of the possible mode layouts. Experience has shown that subdivi-
sion methods 1 and 2 are applicable to a wide range of plate shapes.
A computer subroutine has been written which implements method I and
method 2. The subroutine chooses method I if the difference of the
longest and shortest strip formed is less than 4W, and chooses method
2 otherwise. Also, if the length of the shortest strip is less than
0.1 W, then method 2 will be chosen. The user specifies the corners
of the polygon and the maximum segment size, W. The subroutine gener-
ates the coordinates of the surface-patch dipole modes on the polygon
plate. The accuracy and efficiency of these mode set-ups in the moment
method is discussed in the next chapter on numerical results.
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CHAPTER IV

NUMERICAL RESULTS

In this chapter, data for the input impedance of a monopole anten-
na centered on a disk and scattering data from different polygonal
plates are presented. The surface-patch modes are formed automatically
by the subdivision algorithms given in the preceding chalter. A maxi-
mum segment size W=0.25A is used for all plate subdivisions. The re-
sults are compared with measurements and independent calculations.
All the computations were done on the Digital Equipment Corporation
VAX 11/780, which is three to four times slower than the IBM-370/168.

A. Monopole Antenna on a Disk

The study of the monopole antenna on a circular disk is of inter-
est since it leads to the understanding of the effect of the finite
round plane on antenna input impedance and radiation pattern. Richmond
28J listed the work on this subject and presented a moment method
solution. PWS current forms were used for the wire and the disk dipole
mode consisted of two concentric annular zones with radially directed
currents across the two zones.

In order to use the techniques developed in this work, the circular
disk is first approximated by a polygon. Thin-wire, attachment, and
surface-patch modes are used to represent the surface currents. The
surface-patch modes are formed by using subdivision method 1. The
surface dipole modes for an octagonal disk with a radius of 0.3X are
shown in Figure 18. The input resistance and reactance of a X/4 mono-
pole versus disk radius are shown in Figures 24 and 25, respectively.
Data are shown for square and octagonal disks. In both cases, the
areas are kept constant and equal to that of a circular disk with radi-
us, A. A disk monopole radius of 0.2X is used for the attachment
mode. The most dominant modes in this problem are the wire and attach-
ment modes. This is especially true for small disk radius. As the
disk radius becomes larger, the surface-patch modes become more influen-
tial to the final result. The computed results are compared with the
data obtained from the formulation by Richmond [283. The result from
the square disk approximation agrees with Richmond's result up to about
A = 0.4A , while that of the octagonal disk approximation is in good
agreement up to A = 1.OX . The formulation used in this work can solve
the problem of the off-centered monopole, which was not treated in
any previous work.
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Figure 24. Resistance of a monopole antenna at the center of a disk in
free space.
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IFigure 25. Reactance of a monopole antenna at the center of a disk in
free space.
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B. Scattering from Polygonal Plates

In this section, the scattering data from plates with different
sizes and shapes are compared with independent calculations and measure-
ments. The bistatic and backscatter data are plotted in terms of the
radar cross-section (or echo area) defined as

o =  im 4 a r2 S /S (34)
r -c I

where r is the radial distance from the plate to the observer and SS
and S. denote the time average power densities in the scattered and in-
cident fields, respectively.

The backscatter measurements were made at 9.067 GHz. The plates
were cut from 0.032-inch thick aluminum sheet stocks. A transit was
used to align the suspended plate with the polarization axis of a horn
antenna. All these measurements were done at The Ohio State University
ElectroScience Laboratory by T. Chu.

1. Circular Disks

Figure 26 shows the broadside radar cross-section of an octagonal
plate at different disk radii. Also shown are the data obtained from
the eigenfunction solution of a circular disk by Hodge [29]. Subdivi-
sion method I is used to set up the surface-patch modes except at the
frequency where the disk radius is 1.7 X. Here subdivision 2 is used
to reduce the number of unknowns and computation time.

Backscatter data from an octagonal plate with a radius of 1.2 X
are shown in Figures 27 and 28 for the 0 and r polarization, respect-
ively. Bistatic data for the same plate are shown in Figures 29 and 30
for the 0 and polarization, respectively. Comparisons of the scat-
tering results from the octagonal plate with the eigenfunction solution
by Hodge [29] show disagreements between the present calculations and
Hodge's data at angles close to and at grazing incidence. This is
due to the fact that an octagon only approximates a circle. The eleva-
tion plane pattern for a circular dsk should be igdependent of 4.
However, the pattern made at = 0 and 4 = 22.5 for the octagonal
plate are not identical. Note that the solution for the circular disk
falls between these two curves. This seems to indicate the effect
of the octagonal approximation to a circular disk.

2. Triangles

The backscatter data from a right angle triangle with the side
lengths of 3 X are shown in Figures 31 through 33. The surface-patch
mode setup using subdivision method 2 and the Gordon-Hall procedure are
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shown in Figures 34 and 35, respectively. Note that the Gordon-Hall
procedure set up 264 surface dipole modes, while subdivision method 2
set up only 176 modes. The backscatter data obtained by using t~e
two-mode layouts and measurements are shown for the azimuth plane with
6- and d- polarization and the f)-polarization for the elevation plane
in Figures 31, 32, and 33, respectively. Although the result from
the Gordon-Hall mode layout is not shown in Figure 33, it agrees well
with the two curves shown.

The backscatter for an isosceles triangle in the azimuth plane
for 8- and -polarization are shown in Figures 36 and 37, respectively.
The surface-patch mode layout, using subdivision method 2 as shown in
Figure 38, illustrates how the quadrilateral surface-patch modes are
adequate for modelling the surface currents on a plate with a very acute
angle. The acute angle is 300 and the perpendicular height of the
triangle is 3.25 x. No measurement was done for the 4-polarization
(see Figure 37), but the result shown can be assumed to be accurate.

3. Fin-shaped Plate

A fin-shaped plate along with the surface-patch mode layout is
shown in Figure 39. This plate geometry again illustrates that subdivi-
sion method 2 does set up modes with relatively uniform sizes. Figures
40 and 41 show the calculations and measurements of the backscatter
in the azimuth plane for the 0- and 4-polarization, respectively. In
the 4 -polarization (Figure 41),a curve obtained by using the Geometric
Theory of Diffraction (GTD) is shown. This GTD formulation, which in-
corporated equivalent edge diffracted currents [303 , is current-
ly being developed at The Ohio State University ElectroScience Labora-
tory [313.
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Figure 38. A et of overlapping surface-patch dipole modes formed in a
30 isosceles triangle by using subdivision method 2. This
set of modes is used to generate the backscatter data in
Figures 36 and 37.
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CHAPTER V

ANALYSIS OF MICRUSI-itP ANTL-NNAS

This chapter will present an analysis of the microstrip antenna.
Surface-patch dipole modes are used to model the microstrip patch and
volume polarization currents for the dielectric slab. The nature of
this problem requires unusually precise computation of the impedance
matrix, but the method is capable of accurately predicting currents,
impedance, and resonant frequency of the antenna.

A. Introduction

A microstrip antenna consists of a metallic plate or patch on
an electrically thin grounded dielectric slab. The patch shapes,
such as rectangular, circular, semicircular, trapezoidal, triangular,
and pentagonal [321, have been fabricated in practical microstrip
antennas. The patch can be fed either by a microstrip transmission
line contacting an edge of the patch, or by a coaxial probe extending
through the ground plane and contacting the patch (see Figures 42
and 43). There can be niore than one feed point.

The microstrip antenna has a very low profile since its height
above the ground plane is basically the dielectric substrate thickness.
Except for the coaxial feedline, the antenna does not extend behind
the ground plane. Its simple construction makes it very liqhtweiq't.
Thpse features allow microstrip antennas to be built conformal to
the surface of an air- or spacecraft. Because the antenna is above the
ground plane, it can be easily mounted to any vehicle without interfer-
ing with its internal structure. Microstrip phased arrays have also
been built. In this case, the microstrip radiators and their qssociatcd
microwave feed system (microstrip transsmission lines) can be etched
on a single surface. Thus, these antennas are inexpensive and simple
to fabricate. Although typical bandwidths are in the order of
a few percent, advantages can outweigh this shortcoming. A compre-
hensive report on the various aspects ot microstrip antennas is given
in reference K3 1.

Since the early work (,i microstrip antma, reported by Deschamps
in 1953 F34' up to 1975, the analysis and d(,sign of these antennas
were done by usi n simple n de l adapted from transmission line theory.
Howell 23. and 36. mode lld the microstrip antenna as a dielectric
loaded cavity with maqnketic .,idt w-111. Usinq this mode1, the resonant
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frequency for rectangular and circular microstrip patches can be predict-
ed, but the input impedance at the feed has to be determined experimental-
ly. Based on the same model and taking into account the fringing field,
a more accurate expression for the resonant frequency of a circular disk
was later given by Shen, et aI., 37 . Munson ' 38 and berneryd '39!
considered the microstrip antenna as two sl ots perpendicular to the
feedline and separated by a very low impedance tran,,mission line.
The slots and the surface patch wre mo!el ,,d by an equivalent network,
and transmission line theory was used Lo caIculate the input impedance.
This method was used to model rectangular mic:rustri p patches fed at
the center of an edge. The theory was extended by Oierneryd 40 to
account for different teed locations alomn the edge and the inutual
conductance between the slots.

More recent work rin micr)strip antena -ialysis is based on
modelling the region between the patch ind the ground plane as a reson-
ant cavity. In this method, a complete set o, eigerivectors which
satisfy the wave equation and, therefore, cart ceprcsent the fields
inside the cavity must be found. if the patch shape is of a canonical
form, the eigenvectors can he written in ter-ms of known functions.
In order to simplify the bondary cMolditi m at the side wall (see
Figure 43), many investigators assumo that the tangential component
of the magnetic field (r ) aloirj t.ime w.l is negligible. Thus, the
side wall becomes i agrietic wall. Using this model, Long, et al.,
[41-1 analyzed the circular-disc microstrip anterna and derived the
expressions for the far fi eld, directive gain, efficiency, and the
Q-factor of the antenna. An extension or this work was reported by
Derneryd where the circular disk ''I"' and rectangular patch V43 were
analyzed. A comprehensive work us ileg .his ne odll wa-,s qi von by
Lo, et al ., T44]. Here, solutions fs r mlumet'(ous canon rca) shape, were
given. It should be noted that the tr in~jing field along the edge
of the patch was taken into account either by using an effective dielec-
tric constant for the suhstrate and/or e small ex.ctr 'cn in the dimension
of the patch. An aitoernate, approach to account tor the fringing field
is the use of an impedmnure boundary condit ion on the side wall. In
other words, the side wall is no lonqjer an open circuit (magnetic
wall), but has an associated admittance (or radiating wall). Carver
F45' incorporated this impedance condition for his Model and derived
the expression ot the wall admittonco for the rectangular and circular
patch. In addition, Carver k, sod the fin ite ol oment method to so]ve
the wave equation for arhitrarily shaped patches. Since the problem
of finding the wall admittance for arbitrarily shaped patches was
not solved, this latter technique did riot inc bude the impedance condi-
tion. C.M. Kaloi used the cavity resonator model to derive design equa-
tions which can be used for a conventional microstrip antenna as well as
the "Twin Electric Microstrip Antenna," where identical microstrip patch
es are formed on both sides of a dielectric slab [55J.

Agrawal and Bailey 46 modelled the microstrip patch and feedlin'os
my using the thin wire grid. Using Richrmond's thin wire computer
,ode 3 , a solution was first obtained for the antenna radiating in
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the homogeneous medium having the permittivity of the dielectric sub-
strate. The result was then shifted in frequency and the input imoed-
ance scaled by constants determined from measurements. This was a
i moment method approach, as is the approach used in the following analy-
sis. However, surface patch modes are now used to model the microstrip
antenna, and the presence of the dielectric is taken into account
by the volume polarization current.

The three models described above can be contrasted by the types of

unknowns that have to be determined. In the transmission line model,
the unknowns are the characteristic impedance, propagation constant,
and loads on an equivalent transmission line. The unknowns in the
cavity model are the distribution of the cavity modes (or eigenfunc-
tions) and the resonant frequencies of these modes (eigenvalues). In
the moment method solution presented here, the unknowns are the surface
currents flowing on the microstrip patch, and, if a dielectric slab
is present, the equivalent volume polarization currents in the region
occupied by the slab.

B. The Model

In this section, the model of the microstrip patch, the effect
of the dielectric substrate, and the numerical difficulties will be
discussed. The ground plane under the patch is assumed to be infinite
and, thus, the image theory can be used. In this solution, the equi-
valent volume polarization currents in the dielectric slab are related
to the surface charge density of the patcli. Consequently, the surface
current on the patch is the only unknown involved. As will be shown
later, the current on the plate is inversely proportional to the differ-
ence of the self and mutual impedances of the patches. Since the
difference between the two impedances is very small, both impedances
have to be evaluated very accurately.

1. Air Dielectric Microstrip

Figure 44 shows the side view of an air dielectric microstrip
patch antenna at a height T above a ground plane. The antenna is
shown coaxially fed, although it could just as easily be edge fed.
Using image theory, the ground plane is removed and the image of the
patch and feed probe are inserted. The coaxial aperture is modelled
by a delta gap voltage generator. This is shown in Figure 4 . Gener-
ally, the currents at the wire/patch junction are modelled by the
attachment mode discussed in Chapter Two. But our experience, anO
apparently the experience of others Fl4 1, indicates tnat the feed
probe and voltage generator can be replaced by an impressed current
filament given by

Ji = z amp (35)

existing between the patches and conrmtant in the z direction.
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Figure 45. The model for the air dielectric microstrip antenna.
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Figure 4f. shows the geometry that can be analyzed using the moment
method surface patch modelling technique described in Chapter Two.
The dominant current on the patch is in the direction where the dimen-
sion of the patch is about one-half the wavelength in the dielectric
medium. Thus, only one current dipole mode is used for each patch.
In the case where the patch is close to being a square, the two ortho-
gonal polarizations are needed. In this work, this problem is analyzed
by solving for each current polarization independently, and the total
input impedance is the sun of the individual input impedances. For
each case, the impedance matrix, Equation (8), will have two unknowns.

It is well known that the close proximity of the plates in Figures
44 through 46 will cause the surface currents to distribute unevenly
between the top and bottom surfaces of the plates. Actually, the
majority of the current will be on the interior surfaces of the plates.
This complexity is avoided in this present solution since the surfaCt-
current, Js in Equation (6), is the vector sum of the currents on
the top and bottom surfaces (see Chapter Two). This is the current
which radiates and is, therefore, of primary interest in any solution.

2. Modification for Dielectric Slab

It will now be shown how the natrix equation for the air dielec-
tric microstrip can be modified to account for the dielectric slab
(or substrate). Figure 47 shows the geometry of Figure 46, but with
a dielectric slab of permittivity c:, or, relative permittivity cr =
C/C between the plates. Using the volume equivalence theorem, the
slas is removed and replaced by free space and the equivalent volume
polarization currents (see Figure 48)

Jv = Ec-%) E (36)

where E is the actual electric field in the slab. Note that Jv exists
only in the region previously occupied by the slab. Jvis unknown
since E is unknown. Jv can be treated as inother set of independent
unknowns and expanded in terms of NV basic functions. The coefficients
4n the expansion for Js and Jv are determined by solving a system
of N + NX simultaneous equations 47]. However, the additional un-
knowns, And consequently the increase in compiutation time, made this
technique unattractive for this problem. An alternative approach
used in this work is to treat J and iV as dependent unknowns -48
and 49]. With the slab, the RIF (6) becomes

- O s  (is . E,) ds - MJ (-Jv * L ) dV = v,,, (V1)
V d

where Vd is the volume occupied by the slab and L,,, is still the field
in free space. Assuming that the f i olld irs id ,e the dielectric slah
due to the surface patch current expansion mode can he found, 1v is
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made dependent on J sby expressing the currents in Equation (37) by
the expansion modes

c P
Fn= Fn+ F n (38)

where Fc is the surface conduction current and FP is the volume polari-
zation current,

d t h
w~ere En is the field in the dielectric due to the n expansion node,
Fn. Using Equations (36), (38), and (3), the RIE (37) can be express-
ed by the matrix equation

N

n 'n (zn-n + AZmn) Vin ; in 1, ?, , N (40)

where 7 and V are defined by Equations ( 9) and (10), respectively,
and in mn

AZmn - 0) JiJ [n Em  dV (41
V 
2

N is the total number of surface patch current expansions. While
the integral in Equation (41) in theory extends over the entire volume
of the slab, in practice it is sufficient to integrate a few slab
thicknesses beyond the region shared by modes in and n. Althoug1 tle
expression for En in terms of Somerfeld integrals can he found 50-,
here we make some simplifying approximations.

Assuming that only the z component of En is significant in the
slat), the procedure for computing EdZ will -now be presented. Figure
49 shows _n radiating in the presence of the dielectric slab. The
surface charge density associated with Jn is obtained using the equation
of continuity

V --Jn -jwri sn (4p)

or

I sn _W_-

whure psn is the surface charge density associated with d'r From
the boundary condition

DI + D+ = Psn (4)
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and if we were to assume 01 = O Do, the flux density radiated in
a homogeneous medium (regardless of its permittivity), then Equation
(43) would become

V.Jn
Do sW2 V (45)

2jw

Finally, the electric field at the slab surface would be

Ed7 = D /c -V (4)

p. 0

The major approximation involved in obtaining Equation (46) was the
assumption 01 =1) o . Actually, the pr,,.r, n o f tlie slab causes
a significant asynetry; that is, D > 0 1). Equation (46) can
be modified to include this effect ;s E

Edz RD /c -RV (7)n o 2jwc

where the ratioR = D /D, can be evaluated using the method of dielec-
tric images 1541 and Is derived in Appencix B. Figure 50 illustrates
a typical asymmetry of the D fields at the surface of a slab. R
is evaluated very :lose to t~e surface patch and has been shown to
be accurate for very thin slabs (T<0.OlX ). However, for thicker
slabs, the final result zbegin to deteriorate and this is caused by
the approximation for En.

nn
".juation (47) predicts that Endz at the surface of the slab is

R times the field radiated by Jn in homogeneous medium of permittivity
c.. We use the approximation that En , at any point in the slab,
is R times the field radiated by Jn in a homogeneous medium of permit-
tivity C.

The excitation column could be evaluated using Equations (10)
and (35), i.e.

2T

Vm f Em -Jid Z
0

if E is taken to be the field of the in th [.t modi, in the preson(co
of tfi' dielectric slab. We would 1e to use Lquation (48) witn Lm
still the free spa fliold of the In tesL node. Using the result;
of Equation (47), this can he done by evaluating the Vm using Equation

48) and then mu ltip 1yi ' , )y R/c
r
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Once the patch currents are known, it is straight forward to
evaluate the input impedance at the feed point. Since the feed current
is taken as one amp, the input impedance is numerically equal to the
voltage at the feed point, or

N
z 1 in Vn  (49)

n--

where the factor is a result of the use of image theory to model
the antenna. If the antenna is coaxially ted (rather than edge fed
by microstrip line), the effects of the probe can be included by adding
[45]

376 2' 7~T _'
jxn = j V 6 tan

to Zin.

3. Expansion and Test Modes

The expression for surface patch modes used for the microstrip is
given by Equation (12). Normally, we choosek:wJ e =27r/X o, where A
is the free-space wavelength[13 and 16]. In theory, Lhe moment methoa o
should converge to the same result regardless of any reasonable choice
for k. Here we choose

k = 17 (51)

where E. is the effective dielectric constant given !y [51]

e 2 + + lOT1- (52)

where w is the width of the microstrip. The choice of k primarily
effects the convergence of the impedance level rather than the resonant
frequency. This convergence can be especially slow for a poor choice
of k since the impedance level is essentially proportional to the
divergence or slope of the microstrip patch surface current density
at the feed point.

4. Numerical Difficulties

The moment method solution for microstrip antennas requires the,
un(Isually precise computation of the elements in the impedance matrix.
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Consider the air dielectric microstrip of Figure 46. If we let the
subscript b refer to a single mode on the bottom or image patch and
the subscript t refer to a single mode on the top patch, then

Ib Zbb + 1t Zbt = Vb (3)

Ib Ztb + It Ztt = Vt (54)

If we assume that modes 6 and t are both pointing to the right, then
from image theory we know It = -Ib. Also, from the symmetry of the
problem Z = Zhh, Z = Z and V = -Vb. In this case, Equations5 (5?) and t.4) c4 be ~olve as

Vt ( b)5 Tt = -b tt :,Ztt Z tb

Equation (55) shows that the solution is critically dependent upon
I the difference between the self and mutual impedance of the top irid

bottom modes. Since modes b and t are identical, except that they
are shifted by typically 0.01 X, we expect that Ztt Ztb. Thus,I obtaining Ztt - Ztb accurately is a difficult numerical problem.

As an example, Table I shows Z t, Z and related quantities
for the mnicrostrip shown in Figure 5I ,ex#pt that : 1. Data are
shown at the three frequencies 952.0, 963.0, and 974.0 MHz which are
below, at, and above resonance, respectively. (The data in Table
1 and 2 do not include contributions from losses in the plates or5 the dielectric.)

Note that the self resistance is always slightly larger than
the mutual resistance. This difference controls the level of the
plate currents and of the input impedance, with both increasing as
the difference becomes smaller. The self reactance is smaller than
the mutual reactance below resonance, but larger above. At resonance5 the self and mutual reactances are equal, and Z - Z is purely
real. Since the elements in the voltage vectorl-re e~entially pu.'ly
inaginery, Equation (55) shows that, at resonance, the currents are
maximum and essentially purely imaginary. Finally, from Equation
(49), it can be seen that at resonance the impedance is maximum and
real.

Next, consider the same antenna, except with the dielectric sla).
Table 2 shows Z6, Z ,, aZ , a nd related quantities at the
frequencies 630.(, 6 o ,' d 638.0 AZz which are below, at,
and above resonance, respectively. Note that Re( t) is always larger
than Re(7 ), but by only a few hundredths of an ohim. Also, Im(Ztt)
is less tAn Im(Z tb) by about 16 ohms. Thus, without the AZ dielectric

correction terms we irfe very far from resonance. In this example,
AZtt = - AZtb is about jS ohms. With this correction, Ztt + AZtt
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is nearly equal to Z + AZ near resonance. At resonance (Ztt +
AZtt) - (Ztb + AZtb) is purey real arid equal to about 0.03 ohms.

Tables I and 2 illustrate the accuracy required to obtain accurate
current or impedance data. In Table 2, the self and mutual resistance
must be evaluateJ1 to an accuracy of about 0.05 percent or better,
in order that their difference of 0.04 ohms be reasonably accurate.
Also, Table 2 shows that a combined error of j1 oh in , Z , and
Aztt will lead to a s;hift iii Lire resonant frequency of a~out W MHz,
or about a four percent shift.

Losses in the finitely conducting patches and in the dielectric
can significantly effect the current and impedance level and bandwidth
of th, rri mtmna. The f ini Le conductivity of the patches,
whose treatment is analogous to that of thin wires[19], increases
the self resistance while leaving the mutual resistance unchanged.
Losses in the dielectric are treated by simply allowing c to be complex
in Equation (41). The result is to increase the self resistance arid
decrease the mutual resistance by equal amounts. Thus, in both ca,,,
t'e losses increase the difference between the self and mutual resistan-
ces. For reasonably low loss materials, the changes will be a tiny
fraction of an ohm. However, this change will be significant, to
the current and input impedance, if it is comparable to the difference
between the self and mutual resistance fr the lossless an[,enna; i.e.
for the example shown in Table 2, 0.04 ohms. Note Uhat this strong
dependence of the current level on the losses suggests that it may
be inaccurate to use the loss free currents and fields in perturbation
technique to evaluate the l,,, in the plates and dielectric.

C. Numerical Results

In this section, computation,;, based upon the results of the
previous section, will be presented and compare, to measurements and
previous computations. All of the present results were made using
the same user oriented computer code. The computations in Figures
51 through 53 were made with ou , umkrown, while two unknowns were
required in Figure 54.

Figure 51 shows a co~axially fed recLangular microstrip of length
15 cm. and width 7.5 cm. The dielectric slab is 1/8 inch thick and
with relative permittivity C = 2.56. Figure 51 shows good agreementf r
for the measured and computed input impedance in terms of impedance
level, resonant frequency, and bandwidth (note: the measurement, it,
Figures 5] and 52 were made by D.H. Schaiihort at Harry Di amond Lahora-
tories). Also shown in Figure 51 is tihe computed impedance for the
same antenna, except all losses are remlovd (i.e. plates have p,,r'f
,:,Mnductivity and dielectric tan 6 - 0). Note the substantial increase
in impedance level. Figure 5? shows a t. rae zo ida 1 m i cro., Lr i p pa tc h,
identical to that in Figure 51), except that the widih vmrie-. i-, ,

U ti 11 :r. Note that the theoretical mode) accurately pred i( L,
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the upward shift in resonant frequency. Figure £3 compares the input
impedance of a rectangular edge fed microstrip of length 7.6 cm. and
width 11.4 cm. computed by the present theory to that measured by
Lo, et al., -44-. The dielectric slab is 1/16 inch thick with rlative
per aittivity C 2.62. F i na I ly, F i gure 54 shows the nput impedance
for a nearly square corner fed inicrostrip of dimension 11.3 by 11.2
cm., and with the same s lab (s Figure £3. The cusp in the Curve is,

caused by [he resonance a.s'-,ociated vitti the 11.3 ciii. side bein g at
323 MHz, while that of the 11.? cm. sid, is; nearly the sa at 221.5
MHz.I
D. Discussion

A surface patch moment, mehuoe 'uL iii !or the micros trip antenna
has been presented. The microstrip platw; or patches are node lled
by equivalent surface :.urrents, while the dielectric slab is mode1 led
by equivalent v,,l i i . ),,1:'i ?tion curl'.It, . N.iu'lerical example" illus-
trate that the t-chnique eaii predict witn good acc.uracy the input
impedance of edge and coax aly fed re' (2 , ;,i" and nonrectaiguir
microstrip antenna,, loss. in the il',, rid In the dielectric are
included and have a significant effect on the bandwidth and impedance
level.

An interesting feature of the moment methoJ) so]ution is the unusualI precision required in the 1-npoutat .h't, .l.eiits in the impedance
matrix. It is felt that this is, in part, a consequence of the nature
of tile moment method model. In particular, the fields and currentsI in a nicrostrip anttmia ,',, very ,learly those oof a closed cavity.
In the moment method, the stru cture i, molel led by a number of plat(,
which are basically open radiitor.. It is hoped that by 2nforcing
boundary conditions on the plates that hi,, ,1 d 1 m i .iI "see" the
closed or cavity nature of the structur,. In f-act, it does; however,
the description of the plates and their Iw-atiofi is required to be
very precise. A second explana tion om if ji ;,nsideratJon of [qua-
tions (53) and (£1 ). Equation (5' ) elforces ( in in approximate sense)
the boundary condition that the tang'l i ,o, ':'ii field vanishes
on the bottom or image piate. Fquat iii -) en, 1.rie bondary
condition that the tangential electric f iKld van i';hes on the top plate.
Since the top and bottom plates are separated by typically only O.O1 ,
Equations (53) and (,11) ar,? i il rc uing, t. a I . irge extent, the in(ntical
conditions. Yet accormtoly oalvinj - 1 i'tion,. (1)') and (F4) is dep.ndent
upon them ", ir ij" the relatively ',ml I li ,IIIorrl e e.ween these ( orldi-
tions. The result, i l ustra.tI in I I ,1i, ,, '.,, I') that th1' 'olution
is critically dependen t upon the re]Litv I ly ' I Ih l i I lfrencew betweel
the self and miuiifl impdarces.

Cons t,iorah le colpi irisone, have 'en iad,, hitween t.he !mrienit. UR l hi
lmul.m ) ',..ut., W ')dI ' nsm i i U 1 I Imo I l t, ions

for planar rectangular microstrips. Although the moment method solu-

tion is more complex, it is not significantly moro accurate. The
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advantage of the moment methoJI ;olution may be in its adaptability
to the more involved problems of conformal or coupled microstrip anten-
nas.
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CHAPTER VI

CONCLUSION

A formulation, based on the RIE with electric test source, for
analyzing electromagnetic antenna and scattering problems has been
presented. The use of quadrilateral piecewise sinusoidal surface patch
patch modes, thin-wire modes, and the wire/plate attachment modes allows
a large class of problems associated with arbitrarily shaped surfaces
to be analyzed. Special attention has also been given to the problem
of automatically setting the surface-patch dipole modes for a general
polygon. The applicability and versatility of this formulation has
been demonstrated for a wide range of problems, including monopole
antenna on a disk, scattering from polygonal plates, and analysis
of microstrip antennas.

A. Topics for Further Work

Although the computer code developed for this work can handle
any plate geometry, considerable reduction in the computation time
could result if this code is integrated into the well developed and
efficient user oriented code for rectangular patches. This savings
in time is obtained by the new code's ability to identify the rectangu-
lar plates and applying the topelitz-like properties of the rectangular
surface-patches in evaluating the mutual impedances.

Another topic for further investigation is the use of Sommerfeld's
method to find the Green's function of a surface-patch on a dielectric
substrate. This formulation is more general than the method presented
in the analysis of the microstrip antenna in that it can treat electri-
cally thick, as well as thin, dielectric slabs and the patch
can be on the slab or imbedded in the slab.
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APPENDIX A

EFFICIENT EVALUATION OF PWS FILAMENT-TO-FILAMENT IMPEDANCE

The mutual impedance between filamentary monopoles with PWS cur-
rents can be evaluated from the rigorous closed form expression [22]
or numerical integration. Reference [22) refers to subroutine GGMM
which can be used to compute the mutual impedance of general skew
PWS filamentary monopoles with complex propagation constant,y , (i.e.
lossy homogenous medium). If free space is assumed, then y becomes
pure imaginary and some of the exponential integrals in expression
for the mutual impedance reduce to cosine integrals which are simpler
to evaluate. A subroutine with this simplification [52] is used inI this work when the exact mutual impedance is needed. Since the near
field expression from a PWS filament is known, only a one-dimensional
integration (on the expansion filament) is required to evaluate the
mutual impedance. For parallel filaments, the computation time requir-
ed for the exact evaluation and numerical integration (INT=2) is about
the same, but the letter is not accurate at very small filament separa-
tion. Although numerical integration is also less accurate than the
exact evaluation when two nonparallel filaments are close to each other,
it is much faster. For the nonparallel case, a five-point (INT=4)
and three-point (INT=2) Simpson rule integration is about twice and
three times faster than the exact evaluation (INT=O), respectively.

A simple test to decide on the type of integration (for the non-
parallel case) is to find the distance between the midpoints of the
two filaments (Dm) and use the following decision role:

Dm > 0.25A use INT=2

Dm < 0.25A use INT=O.

However, even within the Dm < 0.25X radius there are many filament
orientations which require only INT=2. The following describes a more
stringent test which can substantially reduce the overall computation
time. Figure 55 shows the reactances and computation times using INT=O,
INT=2 and different INT's chosen by the following decision rule.

Figure 56 shows two filamentary monopoles, M and N, with endpoints
1, 2 and A, B, respectively. Assuming that M and N are not parallel,
the minimum distance, Dmin, between the two filaments are determined by
one of the following:

I
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Figure 55. Reactance of two PWS filamentary mionopoles. The lengths of
the filaments are 0.25A. Si and S2 denote the terminal and
end points of the test monopole, respectively. Ti and T2
denote the terminal and end points of the expansion monopole,
respectively.
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a. I f <0 and " <0, then the filaments cross
each the D D is tHi perpendicular distance between the
two parallel pTanes formed by the two filaments.

b. If PMA * PM8 < 0 and PNI PN2 0 0 then Dmin is the minimum

value of (IPNlI, IPN21).

C. If <0 and M̂A ^MB > 0, then Dmin is the minimumc. If PNI PN ^PA PB-Di

value of OP MA', 'PMB').

d. If pMR >0 and P N > 0, then D • is the minimum
of A disTrices from ;ints -to A, I to ,n2 to A, and
2 to B.

Dmin is then used in the following decision rule:

0 < Dmin < 0.031 choose INT=O

0.03X< Dmin < 0.A choose INT=4

Dmin > 0.I choose INT=2.
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APPENDIX B

EVALUATION OF R BY THE METHOD OF DIELECTRIC IMAGES

I
The assymetry of DI and D (see Figures 49 and 50) due to the

dielectric slab is accounted fr by a constant R. This constant is
the ratio of two average values:

E dz Ez dv
$ n  dv

R 2 (56)z Ez
fff En *E dv

where Edz and EZ are the fields of the nth expansion mode evaluated in
the pregence ofn the dielctric slab and free-space, respectively. EZ

is the field from the m test mode evaluated in free space. V is The
common volume shared by the modes m and n. For electrically thin di-
electric slab, the fields are constant along the z-coordinate and the
integrals in Equation (56) reduce to surface integrals. In practice,
the surfece integration is done inside V and close to the surface
of the m mode. Note that the integrali in Equation (56) are the same
as those used to determine Azmn in Equation (41).

Since R is a ratio of the field averages, the static approximation
is used to calculate these fields. Consider a finite line charge,
as shown in Figure 57, with a uniform charge distribution of density
Q/h. The potential distribution of this line charge isE53, p. 1073

0 = 1 - U + r 2n (7

-7- [n (Uh+rn) (57)

I where rln (xxl)2+(yyl) 2+(z+2nd) 2

I r2n = (x-x2)2+(Yy2)2+(z+2nd)2

n are the intergers (... -2, -1, 0, 1, 2, ... )
d is the dielectric thickness (2T)
U is the distance from (x , y z ) to the projection of (x,

y, z) on to the line formd b eitending the line charge, i.e.:
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Figure 57. A line charge, Q, with the associated coordinates.
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U = (x-x2) CAS + (y-y2) * CBS + (z-z2 ) * CGS

CAS = (x1-x2)/h

CBS = (yl-y 2)/h

CGS = (zl-z 2 )/h.

Ez is found by:

E Ez = 3(

-1 Qn z+2nd z*2nd (
:- Th [(U+ r2 n  -- FYi--T (58)

Equation (58) is the expression for E2 from a line charge and can be
integrated to find the field of a surface charge Ez and E . Note that1 Equation (56) is used only when V2 is the common aPea shared only by
a monopole from zeach mode m and n. If both monopoles of modes m and n
overlap, then E must be the field from a dipole with +Q on one monopole
and -Q on the other. The field from a line charge -Q can be found
by the same method outlined above and this is added to Equation (58)
to form the field from a dipole. The fields of the line charges are

I integrated to find the field due to a surface charge.

Ez due to a surface charge radiating in a homogenous medium with
permittivity E has beg derived. The method of dielectric images [543
is now used to find En , the field in the presence of a dielectric slab.
Figure 58 shows the images of a charge Q close to a dielectric slab
and the regions in which the equivalent images are applicable. That
is, if the field point is in a region, then the fields from the images
(applicable to that particular region) are added. This technique was
also used to generate the relative Dz in Figure 50.
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APPENDIX C

BASIC APPROACHES USED IN SUBDIVISION METHODS I AND 2

I
The rectangle is the simplest shape that can be subdivided into

rectangular surface-patch modes which satisfy all the criteria given
in Chapter Three. Determination of the set of modes for a rectangular
plate like the one shown in Figure 59 is the motivation for the gener-
al approach used in subdivision methods I and 2. The rectangular
is first divided into long strips (Figure 60) and these strips are
then sectioned to form rectangular blocks (Figure 61). These small
blocks become the monopoles of the overlapping PWS surface-patchg modes.

A general polygon can be subdivided in a similar manner. The
polygon is first divided into trapezoidal strips. These strips are
then divided into blocks. It is the strategies used to subdivide the
strips in which method 1 differs from method 2. In method 1, all the
strips are divided into the same number of blocks and, thus, generate
a grid for the two current polarizations as shown in Figures 16 and
18. Realizing that the shorter strips do not require as many blocks
as the longer strips, method 2 segments each strip by a minimal number
of blocks. Also, the sides of the blocks that do no coincide with
the plate boundary are manipulated so that these blocks can become
rectangular blocks. In this way, subdivision method 2 can generate a
large percent of rectangular modes and this becomes more evident in
electrically large plates. Examples of mode layout using subdivision
method 2 are shown in Figures 23, 34, 38, and 39. Both subdivision
schemes are discussed in more detail in Chapter Three.
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PWS SURFA4CE 2

DIPOLE2

Figure 59. Overlapping surface-patch dipole layout on a rectangular
plate.
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STRIP *3

STRIP 4.1

STRIP 01

Figure 60. A rectangle divided into strips.
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Figure 61. A rectangle divided into strips and then into blocks.
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